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 a b s t r a c t

Mullineux defined an involution on the set of e-regular partitions
of n. When e = p is prime, these partitions label irreducible
symmetric group modules in characteristic p. Mullineux’s con-
jecture, since proven, was that this ‘‘Mullineux map" described
the effect on the labels of taking the tensor product with the
one-dimensional signature representation. Counting irreducible
modules fixed by this tensor product is related to counting
irreducible modules for the alternating group An in prime charac-
teristic. In 1991, Andrews and Olsson worked out the generating
function counting fixed points of Mullineux’s map when e = p is
an odd prime (providing evidence in support of Mullineux’s con-
jecture). In 1998, Bessenrodt and Olsson counted the fixed points
in a p-block of weight w. We extend both results to arbitrary e,
and determine the corresponding generating functions. When e
is odd but not prime the extension is immediate, while e even
requires additional work and the results, which are different,
have not appeared in the literature.
© 2025 Elsevier Ltd. All rights are reserved, including those for text

and data mining, AI training, and similar technologies.

1. Introduction

Let Sn denote the symmetric group on n letters. Recall that a partition λ = (λ1, λ2, . . . , λs) ⊢ n
is e-regular if no part repeats e or more times. Let k be an algebraically closed field of characteristic 
p. The irreducible kSn modules are labelled by p-regular partitions [9, Chapter 11] and are denoted 
{Dλ

| λ is p-regular}. Define an involution P on the p-regular partitions by Dλ
⊗ sgn ∼= DP(λ). In [15], 

Mullineux defined a combinatorial map λ → me(λ) on the set of e-regular partitions. He conjectured 
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for e = p a prime that mp = P . Almost twenty years later, Kleshchev [11] described P and Ford and 
Kleshchev [5] proved the conjecture by proving Kleshchev’s description matched Mullineux’s. The 
bijection me is defined combinatorially on e-regular partitions for e arbitrary, and can be interpreted 
similarly using irreducible representations of a certain Hecke algebra [12, Chapter 6.3]. For e = 2
the sign representation is trivial and the Mullineux map is the identity. Combinatorial properties of 
this map have inspired much research, often independent of representation theoretic applications. 
Recently there has been a flurry of research in this area, including multiple new descriptions of the 
Mullineux map [4,8], so having complete information about fixed points in each e-block for arbitrary 
e is particularly timely.

Let An be the alternating group and let the characteristic of k be an odd prime p. One can count 
irreducible kAn modules in two ways: group theoretically by counting p-regular conjugacy classes 
of An, or by restricting modules from Sn using Clifford theory and counting in terms of fixed points 
of the map P . In 1991 Andrews and Olsson, using Olsson’s work in [18], counted the fixed points of 
mp:

Theorem 1.1 ([1, Propositions 2,3]). Let p > 2 be prime. The number of fixed points of mp is the number 
of partitions of n with distinct odd parts, none of which are divisible by p.

This answer agreed with the known representation theoretic count for fixed points of P , 
providing evidence for the as-yet-unproven Mullineux conjecture by showing mp had the expected 
number of fixed points. Later Bessenrodt and Olsson refined this by computing fixed points in an 
arbitrary p-block of weight w:

Theorem 1.2 ([3, Theorem 3.5]). Let p be an odd prime, and µ ⊢ n − pw be a self-conjugate p-core. 
For w even, the number of λ ⊢ n with mp(λ) = λ and having p-core µ is given by the number of 
(p − 1)/2-tuples of partitions with total weight w/2. For w odd, there are no such partitions.

Our main results are to extend Theorems  1.1 and 1.2 to arbitrary e. For e odd but not prime it is 
a simple observation that the original proofs carry over, while for e even additional work is needed, 
including dealing with the unusual setting of using t-bar cores for even t . The author would like 
to acknowledge his colleague William Keith for useful discussions about generating functions. He 
would also like to thank the two anonymous referees for a careful reading of the paper and useful 
suggestions.

2. The Mullineux Map, e-cores and e-weights

For a partition λ = (λ1, λ2, . . . , λs) with Young diagram [λ], define the rim of λ to be the boxes 
along the southeast edge of the diagram, i.e. boxes (i, j) ∈ [λ] with (i+1, j+1) ̸∈ [λ]. Now consider 
a subset of the rim defined as follows, and called the e-rim. Starting at the top right of the rim, take 
the first e elements on the rim. Then move to the rightmost element of the rim in the next row, and 
take the next e elements. Continue until the final row is reached, observing that the final segment 
may contain fewer than e boxes (see Fig.  2.1).

For example if λ = (7, 7, 7, 4, 4, 1, 1) ⊢ 31 and e = 5 we have the e-rim as in Fig.  2.1.
Let a1 be the number of boxes and r1 be the number of rows in the e-rim, so in our example 

a1 = 12, r1 = 7.
To define the Mullineux symbol Ge(λ), remove the e-rim, and then calculate the e-rim of what 

remains to determine (a2, r2). Continue this process until all boxes are removed. Assemble these 
numbers in an array, called the Mullineux symbol of λ: 

Ge(λ) =

(
a1 a2 · · · ak
r1 r2 · · · rk

)
. (2.1)

Notice that (a1, a2, . . . , ak) is also a partition of the same integer n. For example from Fig.  2.2 
we see that:

G5(7, 7, 7, 4, 4, 1, 1) =

(
12 8 5 4 2
7 4 3 3 2

)
.

2



D.J. Hemmer European Journal of Combinatorics 127 (2025) 104141
Fig. 2.1. The 5-rim of λ = (7, 7, 7, 4, 4, 1, 1).

Fig. 2.2. Calculating the Mullineux symbox G5(7, 7, 7, 4, 4, 1, 1).

Now define ϵi = 0 if e | ai and ϵi = 1 otherwise, and set si = ai−ri+ϵi. Then we have Mullineux’s 
conjecture (now theorem):

Proposition 2.1.  Let λ ⊢ n be e-regular with Mullineux symbol

Ge(λ) =

(
a1 a2 · · · ak
r1 r2 · · · rk

)
.

Then the Mullineux symbol for P(λ) is:

Ge(P(λ)) =

(
a1 a2 · · · ak
s1 s2 · · · sk

)
.

It is easy to reconstruct λ from Ge(λ) so Proposition  2.1 gives a combinatorial description of the 
Mullineux map. For example with λ as in Fig.  2.2

G5(m5(7, 7, 7, 4, 4, 1, 1)) =

(
12 8 5 4 2
6 5 2 2 1

)
and m5(7, 7, 7, 4, 4, 1, 1) = (12, 9, 4, 2, 2, 2).

In his original paper Mullineux described necessary and sufficient conditions for such an array 
to arise as the Mullineux symbol of an e-regular partition:

Proposition 2.2 ([15, Theorem 3.6]). An array as in (2.1) is the Mullineux symbol of an e-regular 
partition of n =

∑
ai if and only if:

(i) 0 ≤ ri − ri+1 ≤ e;
(ii) ri − ri+1 + ϵi+1 ≤ ai − ai+1 ≤ ri − ri+1 + ϵi+1 + e;
(iii) ri = ri+1 ⇒ e | ai;
(iv) r − r = e ⇒ e ∤ a ;
i i+1 i

3
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(v) 0 ≤ ak − rk < e
(vi) 1 ≤ rk ≤ e and if rk = e then ak − rk > 0.

Thus, fixed points of me correspond to Mullineux symbols of the form: 

Ge(λ) =

(
a1 a2 · · · ak

a1+ϵ1
2

a2+ϵ2
2 · · ·

ak+ϵk
2

)
(2.2)

where ai is even if and only if e | ai if and only if ϵi = 0. Now we can apply Proposition  2.2 
to arrays of the form (2.2), i.e. fixed points. The conditions on the ri in Proposition  2.2 can easily 
be translated to conditions on the ai. Thus we can enumerate fixed points simply by counting the 
suitable partitions (a1, a2, . . . , ak) ⊢ n.

Definition 2.3.  Define Me(n) to be the set of partitions (a1, a2, . . . , ak) ⊢ n satisfying:
(i) 2 | ai ⇐⇒ e | ai
(ii) 0 ≤ ai − ai+1 ≤ 2e
(iii) If ai = ai+1 then ai is even.
(iv) If ai − ai+1 = 2e then ai is odd.
(v) ak < 2e.

Then we have: 

Proposition 2.4 ([1, Proposition 1]). Let p be an odd prime. The number of partitions λ ⊢ n fixed by 
the Mullineux map is equal to the cardinality of Mp(n).

The proof of Proposition  2.4 goes through for e arbitrary, so to enumerate Mullineux fixed 
points we need to understand the set Me(n). The criteria defining Me(n) are not easily translated 
into a generating function. The main theorem (Theorem 2) of [1] gives a remarkable enumeration 
of partitions with difference conditions like this. Observe for p odd that Mp(n) is a set of type 
P2(A;N, n) from that paper, where N = 2p and A = {1, 3, 5, . . . , p−2, p+2, . . . , 2p−1}. The paper 
gives a bijection with a set P1(A; 2p, n), which in this case is just partitions with distinct odd parts 
not divisible by p, giving Theorem  1.1.

2.1. e-Cores and e-weights

A rim e-hook of λ is e consecutive boxes in the rim which, when removed, leave a Young diagram 
of a partition. Given a partition λ ⊢ n, there is a unique partition λ(e), called the e-core of λ, and 
obtained by removing rim e-hooks from λ until none remain. The number of such hooks removed 
is called the e-weight w of λ, so λ(e) ⊢ n − ew. This is all described in [10]. In [6, Bijection 2] there 
is a bijection between e-core partitions and vectors ⃗n = (n0, n1, . . . , ne−1) ∈ Ze where 

∑e−1
i=0 ni = 0. 

Given the vector n⃗, the corresponding e-core is a partition of 

e
2

e−1∑
i=0

n2
i +

e−1∑
i=0

ini. (2.3)

The e-weight can be obtained by subtracting (2.3) from 
∑

j λj and dividing by e.
Bessenrodt and Olsson worked out how to determine n⃗ directly from the Mullineux symbol of a 

Mullineux fixed point (they state it for p an odd prime but the proof works for any e).

Proposition 2.5 ([3, p. 235]). Suppose λ ⊢ n with me(λ) = λ, e-core λ(e) and Ge(λ) is as in (2.2). Then 
the vector n⃗ corresponding to λ(e) is: 

nj = #{i |
ai − ϵi

2
≡ j mod e} − #{i |

−ai − ϵi

2
≡ j mod e}. (2.4)

Remark 2.6.  It is clear from (2.4) that ⃗n, and thus λ(e), depends only on the set of nonzero residues 
mod e of the ai. The ai which are divisible by e (and hence even with ϵi = 0), do not contribute to 
n⃗.
4
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Table 1
Mullineux fixed points for e = 4 by weight.
 n w = 0 w = 1 w = 2 w = 3 w = 4 w = 5 
 0 1  
 1 1  
 2 0  
 3 1  
 4 1 1  
 5 1 1  
 6 1 0  
 7 1 1  
 8 0 1 3  
 9 0 1 3  
 10 2 1 0  
 11 0 1 3  
 12 1 0 3 4  
 13 1 0 3 4  
 14 1 2 3 0  
 15 2 0 3 4  
 16 0 1 0 4 9  
 17 0 1 0 4 9  
 18 1 1 6 4 0  
 19 1 2 0 4 9  
 20 0 0 3 0 9 12  

3. Main results

In Table  1 we list the number of fixed points under the Mullineux map when e = 4 for 
0 ≤ n ≤ 20 and e-weights 0 ≤ w ≤ 5. Weight zero partitions are e-cores and me acts as conjugation 
on e-cores, so the first column of this table enumerates self-conjugate 4-core partitions, which is 
sequence A053692 in the Online Encyclopedia of Integer Sequence (OEIS) [16]. Each successive 
column is shifted down by e = 4 and multiplied by the corresponding entry in the sequence 
{1, 1, 3, 4, 9, 12, 23 . . .}, which is A002513 in the OEIS, counting partitions of n with even parts 
of two colours, also known as ‘‘cubic partitions’’. Our main results generalize Theorems  1.1 and 1.2 
to arbitrary e and explain the structure of this table.

We fix some standard generating function notation. Define the q-Pochhammer symbol:

(a; q)∞ :=

∞∏
k=0

(1 − aqk)

and the Ramanujan χ function:
χ (q) := (−q, q2)∞ = (1 + q)(1 + q3)(1 + q5) · · · .

Observe that χ (q) is the generating function counting partitions of n into distinct odd parts.
Let mfe(n) be the number of e-regular partitions of n fixed by the Mullineux map and let

MFe(q) :=

∞∑
n=0

mfe(n)qn

be the corresponding generating function. Our first result determines this generating function:

Theorem 3.1. 
(a) [18, for e prime] Let e be odd. Then mfe(n) is the number of partitions of n into distinct odd parts 

not divisible by e. Thus: 

MFe(q) =
χ (q)
χ (qe)

=
(1 + q)(1 + q3)(1 + q5) · · ·

(1 + qe)(1 + q3e)(1 + q5e) · · ·
=

∏
k odd

(1 + qk). (3.1)
e∤k

5
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(b) Let e be even. Then mfe(n) is the number of partitions of n into parts which are either odd or are 
odd multiples of e, and such that the odd parts are all distinct. Thus: 

MFe(q) =
χ (q)

χ (−qe)
=

(1 + q)(1 + q3)(1 + q5) · · ·
(1 − qe)(1 − q3e)(1 − q5e) · · ·

. (3.2)

Notice when e = 2 that MF2(q) simplifies to 
∏

k odd 1
1−qk

, the generating function counting 
partitions with odd parts, which is known to be the same as that for distinct parts. Here, the 
Mullineux map is trivial and we obtain mf2(n) is the number of two-regular partitions, i.e. partitions 
with distinct parts, as expected.

If we look at the corresponding alternating series, there is a nice common description of the two 
generating functions:

Corollary 3.2.  For e arbitrary: 

MFe(−q) =

∞∑
n=0

(−1)nmfe(n)qn =

∞∏
k=1

1 + qek

1 + qk
. (3.3)

Proof.  For both the e even and e odd case, MFe(−q) =
χ (−q)
χ (−qe) , which simplifies to the expression 

above. □

For e = 3, 4, 5, 6 the generating function MFe(−q) corresponds to the sequences A098884, 
A261734, A133563 and A261736 respectively in the OEIS [16]. Before this paper appeared in 
preprint form, there was no mention of the Mullineux map in any of these entries!

3.1. Mullineux fixed points of a given e-weight

We also give a result for all e generalizing Theorem  1.2, counting Mullineux fixed points by 
e-weight.

Definition 3.3.  Let mfe,w(n) be the number of λ ⊢ n with e-weight w and me(λ) = λ.

It is well-known that the Mullineux map of an e-core partition is the transpose or conjugate 
of that partition. So determining mfe,0(n) means counting self-conjugate e-cores. These were 
enumerated by Garvan, Kim and Stanton.

Definition 3.4.  Let sce(n) (= mfe,0(n)) denote the number of self-conjugate e-core partitions of n
and let

SCe(q) :=

∞∑
n=0

sce(n)qn.

Garvan, Kim and Stanton determined SCe(q):

Theorem 3.5 ([6, 7.1a,b]). The generating function SCe(q) is:

SCe(q) =

⎧⎨⎩(−q, q2)∞(q2e, q2e)e/2∞ if e is even
(−q,q2)∞(q2e,q2e)

e−1
2

∞

(−qe,q2e)
if e is odd.

It turns out that for a self-conjugate e-core partition of n − ew, the number of Mullineux fixed 
point partitions of n with that e core depends only on the weight w. These numbers, for w = 0, 
w = 1, etc. also have nice generating functions, again depending on the parity of e. The next 
definition gives the sequences of ‘‘column multipliers’’ that we observed in Table  1:
6
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Definition 3.6.  Let e be even. Define fe(n) by:
∞∑
n=0

fe(n)qn :=

∞∏
k=1

1
(1 − q2k)e/2

1
(1 − q2k−1)

(3.4)

=
1

(q2, q2)e/2∞ (q, q2)∞
.

Let e be odd. Define ge(n) by:
∞∑
n=0

ge(n)qn :=

∞∏
k=1

1
(1 − qk)(e−1)/2 (3.5)

=
1

(q, q)(e−1)/2
∞

Notice that both fe(n) and ge(n) enumerate certain tuples of partitions with total weights adding 
up to n. With this notation, we can state our theorem enumerating Mullineux fixed points of a given 
weight. This result for e an odd prime is Theorem 3.5 of [3].

Theorem 3.7. 
(a) Suppose e is even. Then:

mfe,w(n) = fe(w)sce(n − ew).

(b) Suppose e is odd. Then mfe,w(n) is zero unless w is even in which case

mfe,w(n) = g(
w

2
)sce(n − ew).

Theorem  3.7 lets us determine a single two-variable generating function that keeps track of 
Mullineux fixed points by n and the weight w. We will need a small reindexing given by:

Lemma 3.8.  Suppose A(x) =
∑

∞

i=0 aix
i and B(x) =

∑
∞

j=0 bjq
j. Then:

A(qex)B(q) =

∑
n,w

awbn−ewxwqn.

A(q2ex2)B(q) =

∑
n

∑
weven

aw
2
bn−ewxwqn.

Proof.  Simply reindex the sum with a substitution n = j + ew and (for the second term), 
t = w/2. □

Now define a two-variable generating function: 

Definition 3.9.  Let

MFe(x, q) :=

∞∑
n=0

∞∑
w=0

mfe,w(n)xwqn.

Lemma  3.8 applied to the expressions in Theorem  3.7, and using the generating functions from 
Definition  3.6 and Theorem  3.5, proves the following:

Theorem 3.10.  The generating function MFe(x, q) is:

MFe(x, q) =

⎧⎪⎨⎪⎩
(−q,q2)∞(q2e,q2e)e/2∞

(q2ex2,q2ex2)e/2∞ (qex,q2ex2)∞
if e is even

(−q,q2)∞(q2e,q2e)e−1/2
∞

(e−1)/2 if e is odd

(q2ex2,q2ex2)∞ (−qe,q2e)

7
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4. Proof of the main results

Theorems  1.1 and 1.2 are stated for p an odd prime, because that is where the original 
representation theory motivation comes from. However there is nothing in either proof that makes 
use of primality, so the e odd case of Theorems  3.1 and 3.7 should be attributed to those authors. 
Thus we will consider only the case where e is even.

When e is odd notice that Definition  2.3(i) gives that if e | ai then actually N = 2e | ai. This is not 
the case for e-even, and this means that Me(n) in this case is not dealt with by the bijections in [1]. 
However in [2], Bessenrodt gave a vast generalization that includes this case. So in her notation let 
N = 2e for e even. Choose the sets A′

= {e} and A′′
= {1, 3, 5, . . . , 2e−1} with A = A′

∪A′′. One can 
check that the conditions for Me(n) are precisely those defining Bessenrodt’s set P2(A′, A′′

;N, n). 
Bessenrodt gives a bijection with a set P1(A′, A′′

;N, n), which are all partitions with parts congruent 
mod 2e to elements of A and repeating parts must be congruent to elements of A′. This is precisely 
the set of partitions with all parts odd or odd multiples of e with the odd parts distinct. This proves 
Theorem  3.1(b).

Finally, to prove Theorem  3.7(a), we need to count Mullineux fixed points in a given block. We 
will follow the idea of [3, Theorem 3.5], although the proof is slightly more complicated since e is 
even.

Definition 4.1.  Define κ(r, s) to be the number of tuples (γ 1, γ 2, . . . , γ r
; τ ) where the γ i and τ

are partitions, τ  has odd parts, and |τ | + 2
∑

i |γ
i
| = s.

Theorem 4.2.  Let e be even, let µ be a self-conjugate e-core with w =
n−|µ|

e . Then:

κ

( e
2
, w

)
= #{λ ⊢ n | λ = me(λ), λ(e) = µ}.

Consider the generating function in (3.4). The first term is counting e/2 tuples of partitions with 
even parts and the second term counts partitions with odd parts. We can equally well count e/2
tuples of arbitrary partitions but then double all the parts. So Theorem  4.2 immediately implies 
Theorem  3.7(a), and all that remains is to prove Theorem  4.2.

For the next result we will need the following observation, which is easy to see in [2] (recalling 
that N = 2e.)

Lemma 4.3.  Suppose λ ⊢ n is a Mullineux fixed point with Ge(λ) as in (2.2) and corresponding 
partition (a1, a2, . . . , ak) ∈ P2(A′, A′′

;N, n). Suppose the image partition under Bessenrodt’s bijection 
is (b1, b2, . . . , bs) ∈ P1(A′, A′′

;N, n). Then both partitions have the same set of nonzero residues mod 2e
(and thus also mod e.)

Thus we can use the bi’s to calculate n⃗ and the corresponding e-core and e-weight as in 
Section 2.1. Recall that Bessenrodt’s P1(A′, A′′

;N, n) in this case are partitions of n with all parts 
either odd or odd multiples of e, and the odd parts must be distinct. Henceforth we will consider 
these as pairs of partitions {(c1, c2, . . . , ck), eµ} where (c1, c2, . . . , ck) has distinct odd parts and µ
has odd parts. Notice that the set of nonzero residues mod e in (c1, c2, . . . , ck) is the same as in 
(b1, b2, . . . , bt ), since the odd multiples of e all have e-residue zero. To complete the proof we will 
need to use the theory of t-bar cores and t-bar quotients.

4.1. t-bar cores

For partitions with distinct parts (sometimes called ‘‘bar partitions’’), Morris introduced [13] the 
notion of a t-bar core. These played a role in Humphrey’s determination [7] of blocks of projective 
representations of symmetric groups in characteristic p similar to the role played by p-cores in the 
theory for Sn. We will follow the combinatorics introduced in [14], where a version of James’ abacus 
notation is given for computing t-bar cores. Note this is different from the more well-known James’ 
abacus display for arbitrary partitions using sets of β-numbers.
8
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Fig. 4.1. Abacus display for λ = (23, 21, 17, 13, 11, 9, 7) and t = 6.

Fig. 4.2. Abacus display for λ̃(6) = (9, 5, 3).

Given a partition λ with distinct parts, we form an abacus with runners lying north to south 
labelled {0, 1, 2, . . . , t − 1}. The bead positions are labelled as below:

0 1 · · · t − 2 t − 1
t t + 1 · · · 2t − 2 2t − 1
...

...
...

...

To display λ on the abacus place a bead on the abacus corresponding to each part. For example 
if λ = (23, 21, 17, 13, 11, 9, 7) and t = 6 we obtain the display in Fig.  4.1, where we have also 
included the labels on the runners.

From λ we can obtain its t-bar core, denoted λ̃(t), by performing two types of operations on the 
abacus. The first slides a bead on a runner up one into a vacant spot (beads reaching the location 
zero disappear). This corresponds to replacing a part λi in the partition by λi − t if λi − t is not 
already a part, or removing a part λi = t . Alternately you can remove two beads at positions a and 
t − a in the first row. This corresponds to removing two parts of the partition equal to a and t − a. 
Either operation has the effect of removing a t-bar (which we will not define) from the partition 
and reducing the number being partitioned by t . Eventually there are no further operations possible, 
and you reach the t-bar core λ̃(t). The total number of such operations is well-defined and called 
the t-bar weight. So in our example we obtain λ̃(6) = (9, 5, 3) with abacus display (see Fig.  4.2).

Much of the work done on t-bar cores has assumed t is odd, because the combinatorics is not 
as nice when t is even. For example if t is even a partition may be a t-bar core without being a 
2t-bar core (e.g. for λ = (3, 1) and t = 2 one can remove a 4-bar but not a 2-bar). Also the number 
of partitions with a given t-bar core and t bar weight may depend on the choice of t-bar core and 
not just the weight. Neither of these pathologies happens for ordinary t-cores and rim t-hooks. 
However, as Olsson observes in [17, p. 235], these difficulties do not arise if there are no beads on 
runner t/2. This will be the case in our situation, where t will equal 2e for e even, and the partitions 
will have only odd parts.

Remark 4.4.  Suppose t = 2e for e even and let λ have distinct odd parts. Then the abacus display 
for λ with t runners has beads only on runners with odd labels and, in particular, no beads on 
9
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runner 0 or e = t/2. Moreover all partitions with distinct odd parts and the same set of residues 
mod 2e will have the same 2e-bar core as λ.

We now consider the t-bar quotient, following [14]. Assume t = 2e for e even, and λ has distinct 
odd parts. Then we see that the t-bar quotient is a sequence of e/2 partitions, one for each pair of 
runners {(i, t − i) | i = 1, 3, 5, . . . , e − 1}. The actual construction is in [14, Theorem 2.2] but we 
will need only the count:

Lemma 4.5 ([14, Theorem 2.(2)]). The number of partitions with distinct odd parts having the same 
2e-bar core as λ and 2e-bar weight w̃ is the number of e/2 tuples of partitions of total weight w̃.

Proof of Theorem  4.2.  We are now ready to prove Theorem  4.2 by constructing a bijection between 
the Mullineux fixed points on the right and a set which has cardinality κ( e2 , w) on the left.

Suppose λ ⊢ n has e-weight w and self-conjugate e-core λ(e). Apply Bessenrodt’s bijection to get 
a pair {τ , eγ } where τ = (c1, c2, . . . , ck) has distinct odd parts and γ  has all odd parts, and the 
nonzero residues mod 2e for τ  are the same as for λ. In particular all the τ  have the same 2e-bar 
core. As in [3], we need to check that that 2e-bar core τ̃(2e) is the same size as the e-core of λ, i.e. that 
|λ(e)| = |τ̃2e|. Eq.  (2.3) gives us |λ(e)| in terms of the ni. Now the argument on the top of page 238 
of [3] proves that the size |τ̃(2e)| as a function of the ni agrees with the formula in (2.3).

Recall that when e is odd and λ has even weight w, all the corresponding partitions had the 
same 2e-bar weight w/2. In this situation, with e even, the 2e-bar weight of τ  can be less, with the 
‘‘difference’’ made up for by eγ .

The next step in the bijection is to calculate the 2e-bar quotient of τ . Since τ  has distinct odd 
parts, its 2e-bar quotient is a tuple (ρ1, ρ2, . . . , ρe/2) with 2e-bar weight w̃ =

∑
i |ρ

i
| and

τ ⊢ |τ̃2e| + 2ew̃.

Now we can describe the bijection that proves Theorem  4.2. Given λ as above we send λ to the 
tuple (ρ1, ρ2, . . . , ρe/2

; eγ ). The calculations above show that

w =
n − |λ(e)|

e

=
|τ | + e|γ | − |τ̃2e|

e

=
|τ | − |τ̃2e|

e
+ |γ |

= 2
∑

i

|ρ i
| + |γ |.

So (ρ1, ρ2, . . . , ρe/2
; eγ ) is in the set enumerated by κ(e/2, w).

The final necessary observation is that any choice of 2e-bar quotient concentrated on the odd 
runners together with eγ  satisfying the weight condition w = 2

∑
i |ρ

i
| + |γ | will correspond to 

an original λ in the correct block. This is again the observation from [3] that adding or removing a 
2e bar does not change the vector n̂, nor does the choice of eγ . So the map is surjective. Injectivity 
follow from the fact that Bessenrodt’s map is bijection, and that a partition is uniquely determined 
by its t-bar core and t-bar quotient for any t .
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